Подбор сечения стойки из прямоугольной трубы, работающей на сжатие

Исходные данные:

  • Высота стойки:
L = 2.5 м
  • Расчетная схема стойки:
стержень, шарнирно закрепленный на верхнем и нижем конце
  • Поперечные связи стойки:
отсутствуют
  • Расчетное сопротивление стали стойки (Сталь С245):
Ry = 240 МПа (2446.5 кг/см2)
  • Модуль упругости стали стойки:
E = 2.06·105 МПа (2099898 кг/см2)
  • Коэффициент условий работы стойки:
γc = 0.9
  • Сжимающая сила, прикладываемая к верхнему концу стойки (расчетное значение, принятое с учетом необходимых коэффициентов надежности по нагрузке):
N = 600 кг
  • Высота стойки: L = 2.5 м;

  • Расчетная схема стойки:
стержень, шарнирно закрепленный на верхнем и нижем конце;

  • Поперечные связи стойки: отсутствуют;

  • Расчетное сопротивление стали стойки (Сталь С245):
Ry = 240 МПа (2446.5 кг/см2);

  • Модуль упругости стали балки:
E = 2.06·105 МПа (2099898 кг/см2);

  • Коэффициент условий работы балки:
γc = 0.9;

  • Сжимающая сила, прикладываемая к верхнему концу стойки (расчетное значение, принятое с учетом необходимых коэффициентов надежности по нагрузке):
N = 600 кг.

Требуется:

Подобрать сечение стойки из прямоугольной стальной трубы, требумое для восприятия действующей на стойку сжимающей нагрузки.

Порядок расчета:

  • Подбор требуемого сечения по условию предельной гибкости стойки;

  • Проверка устойчивости подобранного сечения стойки и при необходимости корректировка размеров сечения стойки.

Подбор требуемого сечения по условию предельной гибкости стойки

Предельно допустимая гибкость стойки рассчитывается согласно Таблице 32, СП 16.13330.2017:
\[\lambda = 180 - 60\alpha\]
где коэффициент α принимаем равным 0.5 согласно примечанию к Таблице 32. Тогда,
\[\lambda = 180 - 60 × 0.5 = 150\]
Коэффициент расчетной длины μ для шарнирного закрепления стойки на обоих концах согласно Таблице 30, СП 16.13330.2017:
\[\mu = 1.0\]
Расчетная длина стойки:
\[l_{\mathrm{ef}} = \mu l = 1.0 × 2.5 = 2.5\ \text{м}\]
Требуемый минимальный радиус инерции поперечного сечения стойки:
\[i_{\min} = \frac{l_{\mathrm{ef}}}{\lambda} =\frac{2.5}{150} = 0.0167\ \text{м} = 1.67\ \text{см}\]
Найдем в сортаменте ГОСТа 30245-2003 подходящую трубу с минимальным радиусом инерции равным или чуть большим радиусу инерции imin = 1.67 см.
Фрагмент сортамента труб, ГОСТ 30245-2003:
Примем трубу 70×50×2, обладающую минимальным радиусом инерции imin = 2.03 см, в качестве расчетной.

Проверка устойчивости подобранного сечения стойки

Проверка устойчивости стойки выполняется согласно п.7.1.3, СП 16.13330.2017:
\[ \frac{N}{\varphi A R_y \gamma_c} ≤ 1 \]
где
N – расчетная сжимающая сила;
φ – коэффициент устойчивости при центральном сжатии;
A – площадь поперечного сечения стойки;
Ry – расчетное сопротивление стали растяжению, сжатию, изгибу по пределу текучести;
γc – коэффициент условий работы стойки.
Гибкость стойки из трубы 70×50×2:
\[\lambda = \frac{l_{\mathrm{ef}}}{i} = \frac{2.5}{0.0203} = 123.15\]
Условная гибкость стойки:
\[\bar{\lambda} = \lambda \sqrt{\frac{R_y}{E}} = 123.15 × \sqrt{\frac{240}{2.06 × 10^5}} = 4.2\]
Коэффициент δ согласно п.7.1.3, СП 16.13330.2017:
\[\delta = 9.87 × (1 - \alpha + \beta \bar{\lambda}) + \bar{\lambda}^2\]
где коэффициенты α и β принимаются согласно Таблице 7, СП 16.13330.2017:
\[\alpha = 0.03\qquad\beta = 0.06\]
Тогда,
\[\delta = 9.87 × (1 - 0.03 + 0.06 × 4.2) + 4.2^2 = 29.7\]
Коэффициент устойчивости φ:
\[\varphi = \frac{0.5 × (\delta - \sqrt{{\delta}^2 - 39.48 \bar{\lambda}^2})}{\bar{\lambda}^2} =\]
\[ = \frac{0.5 × (29.7 - \sqrt{29.7^2 - 39.48 × 4.2^2}}{4.2^2} = 0.46\]
Значение коэффициента φ, вычисленное по формуле выше, следует принимать не более \[\bar{\lambda} / 7.6\]  при значениях условной гибкости свыше 3.8 для прямоугольных сечений труб.

Поскольку [\bar{\lambda} = 4.2\], что больше 3.8, требуется вычислить значение 7.6 и сравнить его с расчетным коэффициентом устойчивости φ.

7.6 / 4.22 = 0.43 < φ = 0. 46, следовательно примем φ = 0.43.

Проверка устойчивости стойки:
\[ \frac{N}{\varphi A R_y \gamma_c} ≤ 1 \]
\[ \frac{600}{0.43 × 4.54 × 2446.5 × 0.9} = 0.14 \]
0.14 < 1, следовательно стойка из трубы 70×50×2 обладает необходимой устойчивостью для восприятия расчетных нагрузок.

Вывод:


Примем трубу 70×50×2 по ГОСТ 30245-2003 в качестве конструкции проектируемой стойки.